티스토리 뷰

editor, Seungeon Baek

Reinforcement learning Engineer / RL, Planning and Control

- 해당 글은 개인 블로그의 글들을 옮겨온 글입니다. -

https://seungeonbaek.tistory.com/4?category=806051 

 

Paper review of RL (2) Agent57: Outperforming the Atari Human Benchmark (DeepMind "Agent57")

강화학습 논문 리뷰 연재 두번째입니다. DeepMind의 이번 연구는, 기존 강화학습 알고리즘의 benchmark로써 자주 활용되곤 하는 모든 Atari 2600 게임에서(수 백개중 벤치마크로써 사용되는 57개의 게임)

seungeonbaek.tistory.com


클릭해 주셔서 감사합니다.

 

강화학습 논문 리뷰 연재 두번째입니다.

 

 DeepMind의 이번 연구는, 기존 강화학습 알고리즘의 benchmark로써 자주 활용되곤 하는 모든 Atari 2600 게임에서(수 백개중 벤치마크로써 사용되는 57개의 게임) 사람보다 뛰어난 성능을 보여준 Agent 57이라고하는 agent에 대한 내용을 포함하고 있습니다.

 

계속해서 대단한 성과를 보여주는 DeepMind가 다음엔 어떤 연구를 보여줄지 기대가 되네요ㅎㅎ

 

그럼, 본격적인 리뷰 시작하겠습니다!

 

 논문의 제목은 굉장히 직관적입니다. "Atari 2600 game 환경에서 human benchmark를 상회하는 실력을 보여주는 Agent57!" 이지요.

 이 논문을 기점으로, DeepMind는 DeepMind에서 제공한 강화학습 환경인 Arcade Learning Environment에서의 연구를 졸업했다? 라고 생각해야 할지도 모르겠습니다.

 

목차는 다음과 같습니다.


 가장 먼저, Atari 2600 game으로 강화학습을 시험해 볼 수 있는 환경인, Arcade Learning Environment(이후 ALE로 사용)에 대한 설명과, 이전의 ALE에서 얻은 성과, ALE에서 학습을 수행할 시 발생했던 challenging issue들을 먼저 도입부에서 설명드리려고 합니다.

 

 그 후, 본론에서 Agent 57의 핵심 개념인 Decomposition of Q funciton, Meta-controller에 대해 설명을 드리고, 실험 및 결과를 평가한 내용에 대해 설명을 드리는 것으로 자료를 준비했습니다.

 

 이 논문에서 ALE는 DeepMind에서 제공하는, 강화학습 agent 개발을 쉽게 할 수 있도록 해주는 개발 프레임워크라고 설명이 되어 있습니다.

 

 이 ALE는 고전 게임인 Atari 2600 game의 수 백여개의 게임을 환경으로써 사용할 수 있도록 하는 interface를 제공하고 있으며, 특히 그중 57개의 game은 RL 관련 논문에서 벤치마크로써 주로 사용되곤 합니다. 

 

 제 세대(94년생입니다..ㅎ)들도 한 번쯤 들어보았던 Space invader(갤러그), break-out(벽돌 부수기 게임) 또한 이 환경에서 제공해준다고 합니다.

 

 저는 Agent 57의 결과가 어느 정도로 대단한 것인지 알기 위하여, ALE에서 기존의 deep RL Agent들이 얻은 성과들을 정리해 보았으며, 이 장은 정리한 결과를 보여주고 있습니다.

 

1) 2015년 DQN 논문으로도 유명한 Human-level control through deep RL에서는, DQN agent가 23개의 Atari game에서 HNS, Human noalized score를 넘었다고 합니다. HNS의 식은 자료에 기술해 두었습니다. 같은 해에 나온 DRQN 논문의 경우 일부 십 여 개의 게임에 대해서만 성능 평가가 이루어 져서, 생략 하겠습니다.

 

2) 2018년, DQN, PER, DDQN, Double DDQN 등 DQN 계열 아이디어의 집합체였던 Rainbow DQN의 경우, 괄목할만한 성과를 거두어 53개의 Atrai game에서 HNS를 능가하는 결과를 얻었다고 합니다.

 

3) 또한, 2019년 R2D2의 경우도, 52개의 Atari game에서 HNS를 능가하는 결과를 얻었다고 합니다. 하지만, Rainbow와 R2D2의 경우, sparse reward가 주어지는 환경 등에 약한 모습을 보여 모든 게임에서 좋은 결과를 얻지는 못하였습니다.

 

4) 2019년, AlphaGo, AlphaZero에 이어  Model-based learning 알고리즘인 MuZero가 발표 되었고, 이 Agent의 경우, 57개의 게임 중 51개의 game에서 HNS를 능가하는 정도의 결과를 얻었지만, 전체 game에서 평균 점수 등이 R2D2, IMPALA 등을 상회화는 결과를 얻었다고 합니다.

 

 이렇듯, 최근에 발표된 deep RL Agent들은 Agent57이 정복한 57개의 게임 중, 몇몇 게임들은 해결하지 못 하였으며, 이러한 문제는 다음과 같은 해결해야할 이슈들을 남겼습니다.

 

1) 첫 번째는 Long-term credit assignment 문제입니다.

이 문제는, 현재 많은 강화학습 알고리즘들이 MDP를 수학적 프레임워크로 사용하고 있기 때문에 생긴 문제로써, 이전에 행했던 일련의 행동들(long-term) 중 어떤 행동에 credit을 주고, 어떠한 행동에 penalty를 줘야할 지 분배(assignment)하는 것이 어렵기 때문에 발생했습니다.

이 문제를 설명하기 위한 예시로, 이 논문은 Atari game중 하나인 Skiing에 대한 예시를 들었습니다.

 

2) 두 번째는 Exploration in large high dimensional state space 문제입니다.

이 문제는 sparse reward를 주는 환경인 몬테수마의 복수(Montezuma's revenge) 게임 등에서 특히 발생한 문제로, reward를 적게 받더라도 agent가 문제 해결을 하기 위해서 지속적인 탐험을 해야한다는 문제였습니다.

이 문제 또한 MDP 프레임워크를 사용할 경우 immediate reward만을 받기 때문에 기존의 강화학습 알고리즘이 해결하기 어려운 문제였습니다.

 

2 번째 문제는 초창기 강화학습 알고리즘에서도 많이 다루어 왔던 문제로, 이를 해결하기 위해 여러 방법들이 제시되어 왔으며, 보통 다음과 같은 범주에 속한다고 합니다.

   (1) Randomize value function

   (2) Unsupervised policy learning

   (3) Intrinsic motivation

   (4) Combining handcrafeted features of domain-specific knowledge

 

 이 중, general AI의 컨셉에 맞는, 가장 팬시한 방법은 3) intrinsic motivation이라고 생각이 되며, 이에 관련하여 DeepMind는 Agent 57이전에 Never Give Up!(이후 NGU)이라고 하는 논문을 발표하기도 하였습니다.

 

 이 장부터는, Agent57이 어떻게, benchmark로서 자주 사용되는 57개의 game을 모두 정복할 수 있었는지에 대해 말씀드리겠습니다.

 

 간단히 요약하면, Agent57의 경우 완전히 새로운 개념을 도입한 것은 아니고, NGU에서 발표한 intrinsic reward 개념과 R2D2를 기반으로 조금 엔지니어링을 첨가한논문이라고 볼 수 있을 것 같습니다.

 

 그리하여 저자들이 말하는 Agent57의 contribution은 다음과 같다고 합니다.

1) State-action value function(Q-function)을 intrinsic reward와 extrinsic reward로 decomposition하여 구현한 점

2) Meta-controller 개념을 이용해 exploration/exploitation을 adaptive하게 선택한 점

3) 1)과 2)를 통해 결과적으로 57개의 atari game 모두에서 human baseline을 능가한 점 이라고 합니다.

 

 여기서 Intrinsic reward와 extrinsic reward에 대해 간단히 말씀 드리면, intrinsic reward는 내적 동기 즉, 호기심, 배움의 의지, 행동의 의미 와 관련이 있다고 생각하시면 될 것 같고, extrinsic reward는 점수, 즉각적인 보상, 페널티에 대한 두려움 등과 관련이 있다고 생각하시면 될 것 같습니다.

 

이 장에서는 3개의 주된 contribution 중 첫 번째에 대해서 먼저 말씀드리겠습니다.

 

 Agent 57의 경우 state-action value를 extrinsic reward를 통해 학습 되는 Q_extrinsic과 intrinsic reward를 통해 학습 되는 Q_intrinsic의 두 개의 component로 나누어 구했으며, 이를 beta라고 하는 hyper parameter를 통해 조절하였습니다.

 

 여기서 extrinsic reward는 우리가 알고 있는 환경에서 주는 immediate reward이며, intrinsic reward의 경우 NGU에서 소개한 호기심과 관련된 reward를 의미합니다. 쉽게 말해, 경험하지 못한 상태를 만날 경우 추가적인 reward를 받음으로써, 경험해 보지 못한 상태로의 탐험을 종용하는 reward입니다.

 

 또한, 이 논문에서는 Q value function network를 두 개로 나누어 학습한 결과와, NGU에서 제시한 single network로 reward만 extrinsic, intrisic reward로 나누어 받도록 학습한 결과가 최적점에서 같다는 증명을 수행 하였으며, 실제 학습시에는 network를 decomposition 하는 것이 결과가 좋았다는 얘기를 했습니다. 

 

Agent57의 주된 contribution 중 두 번째인 Meta-controller입니다.

 

Meta-controller는 최신 연구 분야 중 하나인 Meta-RL과 관련되어 나온 개념이 아닌가 생각됩니다. 이 부분은 저의 뇌피셜이니, 논문에 기술된 내용만 소개하자면...

 

 이 논문에서 Meta-controller은 다음과 같이 동작합니다.

1) Agent가 탐험이 필요한 초기에는 intrinsic reward의 계수인 beta를 크게, 할인율 gamma를 작게 선택하고, 학습이 진행될 수록 그 반대의 pair를 선택합니다.

2) 또한, 이렇게 pair를 선택하는 방식을 multi-arm bandit algorithm을 통해 구현했다고 하며, 이 multi-arm bandit algorithm의 경우 r_extrinsic 만을 이용하는 UCB(Upper confidence bounds) algorithm을 통해 동작하게끔 구현했다고 합니다.

 

 정리를 해 보면, Agent57의 agent는 1) 호기심을 통해 선택해 본 적이 없는 행동에 대한 선택을 할 수 있으며, 2) 현재 호기심을 부려야 할지, 지금껏 학습한 대로 행동해야 할지 또한 판단할 수 있는 agent라고 할 수 있습니다. 이것을 수학적으로, 그리고 소프트웨어적으로 설계하고 구현한 DeepMind가 정말 대단한 것 같습니다.

 

다음 장 부터는 실험을 수행한 내용과 그 결과에 대해서 설명드리겠습니다.

 

 이 장부터는, Agent57과 타(他) agent사이의 비교를 어떻게 수행했는지에 대한 내용과, Agent57의 학습 결과에 대해서 말씀드리겠습니다.

1) Agent57을 이용해 57개의 모든 게임을 학습 시켜 본 뒤, 학습이 오래 걸렸던 10개의 게임을 선택했습니다.

2) 10게의 게임에 대해 자료에 도시한 3개의 대조군 및 여러 대조군들과의 비교 및 분석을 수행했다고 합니다.

 

 이 장에서 소개한 대조군에 대해 간단히 설명 드리면, seperate net, long trace, bandit이 NGU와 Agent57의 차이라고 볼 수 있고, 그렇기 때문에 상기의 3개의 대조군을 비교를 위해 설정했다고 보시면 될 것 같습니다.

 

그래프를 보시게 되면, 결과는 물론 Agent 57이 가장 좋았습니다.

 

RD2D 논문을 정확히 파악하고 있지 않아, 깔끔한 분석을 할 수 없었습니다. 추후, 수정을 할 수 있도록 하겠습니다.

 

결론은 다음과 같습니다.

1) 환경으로써 사용된 57개의 game에 대해 Agent57의 경우, 모든 게임에서 human score를 능가하는 결과를 얻었다고 합니다.

2) 모든 게임에 대해 평균과 중앙 값을 계산해보면 MuZero가 가장 뛰어나다는 것을 알 수 있었지만, MuZero의 경우, Pitfall, Venture등의 게임에서 random policy 정도의 성능을 보여주었음을 알 수 있었다고 합니다.

3) 또한, R2D2에 meta-controller 개념을 추가시켜 학습한 결과, 기존의 R2D2와 비교하여 더욱 좋은 성능을 보였다는 것과 함께 meta-controller의 성능을 과시하였습니다.

 

 본문에는 Appendix로 추가한, 전체 57개 게임에 대한 결과입니다. 표의 열은 각각 game 명, Average human, random, Agent 57, 타 알고리즘 들로 구성되어 있습니다.

 

 몇 몇 game에서는 타 알고리즘이 Agent 57을 압도하는 경우도 있지만, 전체 game에서 Average human을 이긴 Agent 57이 ALE 환경에서 DeepMind가 얘기하였던 general AI에 가장 가까운게 아닌가 생각이 듭니다.

 

이번에도 긴 글을 읽어주신 점 감사드립니다.

 

논문의 링크는 밑에 준비되어 있습니다.

 

arxiv.org/abs/2003.13350

 

Agent57: Outperforming the Atari Human Benchmark

Atari games have been a long-standing benchmark in the reinforcement learning (RL) community for the past decade. This benchmark was proposed to test general competency of RL algorithms. Previous work has achieved good average performance by doing outstand

arxiv.org

 

댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
«   2024/04   »
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30