Point cloud :: KdTree와 KNN
K-dimensional Tree는 K 차원으로 공간상의 점들을 정리하는 자료구조 중 하나이다. 이진트리(binary tree)의 종류인데, 제약조건이 추가 됐을 뿐이다. K-d Tree는 range나 nearset neighbor 탐색에 매우 유용하다. Kd tree는 그 공간의 차원에 제한 되는데, 포인트 클라우드는 일반적으로 3차원이므로 여기서 사용하는 kdTree의 차원은 3차원이다. kd tree는 기본적으로 x축을 기준으로 yz 평면에 평행하게 한번, y축 기준으로 한번, z축 기준으로 한번 나누어 이를 Tree 형식으로 만드는 원리이다. 이렇게 계속 나눠서 이진 트리 형태의 구조가 된다. 사진에서는 KdTree를 이용해서 Nearest-Neighbor 방법이 적용되는 모습을 볼 수 있..
미니멀공대생/Point Cloud
2021. 5. 21. 20:34